808 research outputs found

    Capillary-gravity solitary waves on water of finite depth interacting with a linear shear current

    Get PDF
    The problem of two-dimensional capillary-gravity waves on an inviscid fluid of finite depth interacting with a linear shear current is considered. The shear current breaks the symmetry of the irrotational problem and supports simultaneously counter-propagating waves of different types: Korteweg de-Vries (KdV)-type long solitary waves and wave-packet solitary waves whose envelopes are associated with the nonlinear Schrödinger equation. A simple intuition for the broken symmetry is that the current modifies the Bond number differently for left- and right-propagating waves. Weakly nonlinear theories are developed in general and for two particular resonant cases: the case of second harmonic resonance and long-wave/short-wave interaction. Traveling-wave solutions and their dynamics in the full Euler equations are computed numerically using a time-dependent conformal mapping technique, and compared to some weakly nonlinear solutions. Additional attention is paid to branches of elevation generalized solitary waves of KdV type: although true embedded solitary waves are not detected on these branches, it is found that periodic wavetrains on their tails can be arbitrarily small as the vorticity increases. Excitation of waves by moving pressure distributions and modulational instabilities of the periodic waves in the resonant cases described above are also examined by the fully nonlinear computations

    Hydroelastic solitary waves in deep water

    Get PDF
    The problem of waves propagating on the surface of a two-dimensional ideal fluid of infinite depth bounded above by an elastic sheet is studied with asymptotic and numerical methods. We use a nonlinear elastic model that has been used to describe the dynamics of ice sheets. Particular attention is paid to forced and unforced dynamics of waves having near-minimum phase speed. For the unforced problem, we find that wavepacket solitary waves bifurcate from nonlinear periodic waves of minimum speed. When the problem is forced by a moving load, we find that, for small-amplitude forcing, steady responses are possible at all subcritical speeds, but for larger loads there is a transcritical range of forcing speeds for which there are no steady solutions. In unsteady computations, we find that if the problem is forced at a speed in this range, very large unsteady responses are obtained, and that when the forcing is released, a solitary wave is generated. These solitary waves appear stable, and can coexist within a sea of small-amplitude waves

    Nonlinear hydroelastic waves on a linear shear current at finite depth

    Get PDF
    This work is concerned with waves propagating on water of finite depth with a constant-vorticity current under a deformable flexible sheet. The pressure exerted by the sheet is modelled by using the Cosserat thin shell theory. By means of multi-scale analysis, small amplitude nonlinear modulation equations in several regimes are considered, including the nonlinear Schrödinger equation (NLS) which is used to predict the existence of small-amplitude wavepacket solitary waves in the full Euler equations and to study the modulational instability of quasi-monochromatic wavetrains. Guided by these weakly nonlinear results, fully nonlinear steady and time-dependent computations are performed by employing a conformal mapping technique. Bifurcation mechanisms and typical profiles of solitary waves for different underlying shear currents are presented in detail. It is shown that even when small-amplitude solitary waves are not predicted by the weakly nonlinear theory, we can numerically find large-amplitude solitary waves in the fully nonlinear equations. Time-dependent simulations are carried out to confirm the modulational stability results and illustrate possible outcomes of the nonlinear evolution in unstable cases

    Superform formulation for vector-tensor multiplets in conformal supergravity

    Full text link
    The recent papers arXiv:1110.0971 and arXiv:1201.5431 have provided a superfield description for vector-tensor multiplets and their Chern-Simons couplings in 4D N = 2 conformal supergravity. Here we develop a superform formulation for these theories. Furthermore an alternative means of gauging the central charge is given, making use of a deformed vector multiplet, which may be thought of as a variant vector-tensor multiplet. Its Chern-Simons couplings to additional vector multiplets are also constructed. This multiplet together with its Chern-Simons couplings are new results not considered by de Wit et al. in hep-th/9710212.Comment: 28 pages. V2: Typos corrected and references updated; V3: References updated and typo correcte

    Three dimensional flexural–gravity waves

    Get PDF

    Asymmetric gravity-capillary solitary waves on deep water

    Get PDF
    We present new families of gravity–capillary solitary waves propagating on the surface of a two-dimensional deep fluid. These spatially localised travelling-wave solutions are non-symmetric in the wave propagation direction. Our computation reveals that these waves appear from a spontaneous symmetry-breaking bifurcation, and connect two branches of multi-packet symmetric solitary waves. The speed–energy bifurcation curve of asymmetric solitary waves features a zigzag behaviour with one or more turning points

    Finite-Element Analysis of the Eaves Joint of Cold-Formed Steel Portal Frames having Single Channel-Sections

    Get PDF
    A finite element model is described for the eaves joint of a cold-formed steel portal frame that comprises a single channel section for the column and rafters eaves connections. The members are connected to the brackets through both screws and bolts. Such a joint detail is commonly used in practice in New Zealand and Australia, where the function of the screws is to prevent slip of the joint during frame erection since the bolt holes are detailed for nominal clearance. The results of the finite element model are compared against two experimental test results. In both, the critical mode of failure is a combination of torsion of the eaves joint and shear failure of screws. It is found that at ultimate load, the bolts have not engaged i.e. they have slipped. It is shown that the stiffness of the joints can be accurately predicted from the equations of bolt and screw stiffness of Zaharia and Dubina (2000). It is also shown that the finite element model can be used to determine both an upper and lower bound to the failure load

    Symplectic structure of N=1 supergravity with anomalies and Chern-Simons terms

    Full text link
    The general actions of matter-coupled N=1 supergravity have Peccei-Quinn terms that may violate gauge and supersymmetry invariance. In addition, N=1 supergravity with vector multiplets may also contain generalized Chern-Simons terms. These have often been neglected in the literature despite their importance for gauge and supersymmetry invariance. We clarify the interplay of Peccei-Quinn terms, generalized Chern-Simons terms and quantum anomalies in the context of N=1 supergravity and exhibit conditions that have to be satisfied for their mutual consistency. This extension of the previously known N=1 matter-coupled supergravity actions follows naturally from the embedding of the gauge group into the group of symplectic duality transformations. Our results regarding this extension provide the supersymmetric framework for studies of string compactifications with axionic shift symmetries, generalized Chern-Simons terms and quantum anomalies.Comment: 27 pages; v2: typos corrected; version to be published in Class.Quantum Gra

    KP solitons in shallow water

    Full text link
    The main purpose of the paper is to provide a survey of our recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. The classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. Each soliton solution is then defined by a point of the totally non-negative Grassmann variety which can be parametrized by a unique derangement of the symmetric group of permutations. Our study also includes certain numerical stability problems of those soliton solutions. Numerical simulations of the initial value problems indicate that certain class of initial waves asymptotically approach to these exact solutions of the KP equation. We then discuss an application of our theory to the Mach reflection problem in shallow water. This problem describes the resonant interaction of solitary waves appearing in the reflection of an obliquely incident wave onto a vertical wall, and it predicts an extra-ordinary four-fold amplification of the wave at the wall. There are several numerical studies confirming the prediction, but all indicate disagreements with the KP theory. Contrary to those previous numerical studies, we find that the KP theory actually provides an excellent model to describe the Mach reflection phenomena when the higher order corrections are included to the quasi-two dimensional approximation. We also present laboratory experiments of the Mach reflection recently carried out by Yeh and his colleagues, and show how precisely the KP theory predicts this wave behavior.Comment: 50 pages, 25 figure
    • …
    corecore